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Computer Simulation of Kinetics of 
Coil-Stretched Chain Transition in 
Elongational Flow 
A. A. DARINSKII, A. V. LYULIN, and M. G. SAPHIANNIKOVA 

Institute of Macromolecular Compounds, Russian Academy of Sciences, 3 I Bol'shoi pr., 
St. Peiersburg 799004, Russia 

The Brownian dynamics technique is used to simulate the behavior of a polymer chain in an elongational flow. 
A macromolecule is represented by dumbbell with conformation-dependent friction coefficient. Equilibrium and 
kinetic properties of the chain are studied. The effective potential approximation is shown to be quite appropriate 
for the description of the chain distribution function. The transition times through the effective potential barrier 
are in a good agreement with the prediction of the Kramers theory. The S-shaped curve for the extension ratio 
of the dumbbell as a function of the velocity gradient is observed when simulation times are comparable with the 
transition times. 

KEY WORDS Dumbbell model, conformation-dependent friction coefficient, elongational flow, effective po- 
tential, kinetics. 

1. INTRODUCTION 

It is well known that the coil-stretched chain transition of flexible polymers in an elonga- 
tional flow is observed when the critical value of the velocity gradient k is The 
correct mathematical description of this phenomenon is rather a complicated problem. To 
simplify it one generally uses the dumbbell model for polymer chain. However, even for the 
dumbbell model the problem cannot be solved analytically without some approximations. 
The solution of the problem should contain the distribution function for chain conforma- 
tions at different velocity gradients and different chain parameters. De Gennes has used 
an one-dimensional approximation4 and obtained the distribution function for extension 
ratios p. This function has two peaks in the region of velocity gradients near the critical 
value &. These results allowed him to introduce an effective potential for the chain and 
consider the chain motion in an elongational flow as a motion in the field of this potential. 
In Reference 5 the spatial distribution function has been obtained for the dumbbell model. 
Contrary to de Gennes, they used ab initio the effective potential approximation in which 
the nonpotential part of hydrodynamic force is neglected. 

Despite the progress achieved' in comparison with de Gennes' results4 the question 
remains unsolved if the effective potential description is correct. It should be noted that in 
this case it is a fundamental problem, rather than the problem of accurate description. The 
system consisting of a stretched macromolecule in an elongational flow is a nonequilibrium 
dissipative system and the applicability of the equilibrium statistical mechanics to this 
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system is not obvious. A similar question arises if we consider the transition kinetics of 
the macromolecule between the coiled and stretched states as a Brownian motion in the 
external effective potentiaL6 To answer these questions the motion of dumbbell model in 
an elongational flow without any approximations should be simulated, which has been 
performed in our study using the Brownian dynamics technique. 

Another interesting problem is connected with the S-shaped curve for the extension 
ratio of macromolecules as a function of the velocity gradient 8. Such a curve has been 
obtained by de Gennes with the help of self-consistency approximation: where the elastic 
constant and friction coefficient depend on the root-mean-square extension of the dumb- 
bell at the current time. The de Gennes result was criticized in the work of Bird et d7 
The criticism was based on numerical solution of the diffusion equation for the dumbbell 
model by Galerkin’s method. Bird did not obtain the S-shaped curve and “felt strongly 
persuaded that S-shaped curves in the dumbbell calculations must result from the mathe- 
matical approximation made.”7 Therefore the problem of the S-shaped curve has also been 
considered in present work. 

This paper is organized as follows. Section 2 briefly outlines the effective potential 
approximation of Brestkin et al.’ Section 3 describes the model and simulation technique. 
Finally the results obtained and their discussion are presented in Section 4. 

2. EFFECTIVE POTENTIAL APPROXIMATION 

A flexible macromolecule consisting of N identical segments of length A and friction 
coefficient Cs is represented by a viscoelastic dumbbell with elastic constant E ( P )  and 
beads friction coefficient Cb( p )  both depending on the extension ratio /3. Here ,b’ = h/  NA,  
h = lhl, h is end-to-end vector of the dumbbell. 

The dumbbell is located in elongational flow with velocity gradient tensor: 

0 
K =  € 0 -1/2 (: 0 -sz) 

It was shown8 that for steady-state elongational flow the diffusion equation for dumbbell 
model is reduced to force balance equation: 

Fs + Fe1 + F d  = 0, ( 2 )  

where F,  = [<t,(p)/2]kh is the hydrodynamic force, Fel = - ( 3 k T / N ) E ( P ) h  is the 
elastic force, Fd = - k T V l n  @ ( h )  is the smoothed up Brownian motion force. Here 
@ ( h )  is the distribution function for end-to-end vector h. 

This equation cannot be solved analytically for conformation-dependent friction coef- 
ficient C b ( P )  since rotF, f: 0. The approximation used in Reference 5 consisted in the 
replacing of the total hydrodynamic force F,  by its potential part Fs. Then only one scalar 
equation remains to be solved in the spherical coordinate system ( h ,  8, ‘p) for given 8, ‘p: 
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FIGURE 1 The effective potential U ( p )  for N = 100 at 0 = 0': i < icr (solid curve), c: = kcr (dotted 
curve), i > icr (dashed curve). 

where F s h  and F e l h  are the projections of hydrodynamic and elastic forces on flow axis. 
The stationary distribution function can be obtained by integrating this equation over h: 

The function 
h 

U ( h )  = -/ ( F s h  + F h )  dh 
0 

can be interpreted as effective potential for the system under consideration. To obtain 
the dependence V ( P )  one should choose the concrete form for dependencies E ( P )  and 
< b ( P ) .  At present time a number of different forms has been used.'-" In the paper of 
Brestkin et af.12 the following expressions have been proposed: 

In Figure 1 the effective potential curves U ( P )  at 6 = 0" calculated with the help 
of dependencies (6) and (7) are presented for N = 100 and different values of velocity 
gradient i. One can see that in some region of 6 the potential curve has two minima 
corresponding to the coiled and stretched states of the dumbbell. The value CCr at which 
both minima have equal depths (dotted curve in Figure 1)  are referred as a critical value of 
velocity gradient. 
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TABLE I 
The optimal time steps At in units of C:.A 

N 50 100 150 200 250 
At 0.0004 0.001 0.0025 0.004 0.015 

X is the relaxation time of the dumbbell at equilibrium. 

3. MODEL AND SIMULATION TECHNIQUE 

For simulation by the Brownian dynamics technique we have chosen the same dumbbell 
model as Brestkin etaf.'' The motions of the dumbbell beads are described by the Langevin 
equations: 

where r z ( t )  is the position vector of i-th dumbbell bead at time t ,  i, is its instantaneous 
velocity, Fd, is random force to which i-th bead is exposed. In finite difference form this 
equation can be written as follows: 

<b(P)[irz(t) -is] + (-1)*Fd +Fd, = 0 i = 172 (8) 

where At is time step, ri(t + At) is the position vector of i-th bead at time t + At. The 
random force Fdi is completely characterized by the first two momenta: 

The mean value of random force is not equal to zero. It was shownI3 that this term of 
random force in Langevin equation should be cased when models with a conformation- 
dependent friction coefficient (or, in general, conformation-dependent diffusion matrix) are 
considered. 

Langevin equation (9) was solved numerically on IBM PC AT-386(387). To make 
Equation (9) dimensionless and convenient for numerical work, all the parameters were 
expressed in the units of length A, energy KT and time XO = CsA2/KT, where A is the 
value of the segment length and CS is the segment friction constant of a macromolecule. 
To determine the optimal integration rule and the optimal values of the time step we have 
simulated previously the one-dimensional dumbbell model. The dumbbell motion in this 
case is described by one scalar equation instead of vector Equation (9). Since in this case 
the exact solution of Equation (2) is known the correctness of simulation procedure can be 
checked. The optimal integration rule is proved to be trapezoidal with one iteration and 
initial step made according to the Euler rule. The time steps presented in Table I turned out 
to be optimal for our computational resources. 

The simulations were performed in two parts. In the first part the stationary situation 
was studied for the case when the effective potential minima have equal depths. In the 
second part the nonstationary situation for different velocity gradients i was examined. 
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KINETICS OF COIL-STRETCHED CHAIN TRANSITION 19 

TABLE II 
The critical values of velocity gradient Ccr 

N 50 100 150 200 250 

G , s - '  1.26 x 1 0 - ~  3.82 x 10-~  1.87 x 1 0 - ~  1.12 x 1 0 - ~  7.52 x lo4 
icr 0.445 0.382 0.344 0.317 0.291 

FIGURE 2 The two-dimensional distribution function @(o, 0) for N = 150 at C = CCr. 

4. RESULTS AND DISCUSSION 

Stationary case 

As was mentioned in Section 2 the effective potential at the critical value of the velocity 
gradient 2, has two minima with equal depths at pC and at ps corresponding to coiled and 
to stretched states and separated by a potential barrier of height UO (see Figure 1). We 
simulated the motion of the dumbbell model with the parameters N = 50, 100, 150, 200, 
and 250 at corresponding ia( N )  (see Table 11). During the simulation time, a number of 
transitions through a potential barrier UO( N )  were observed. Simulations were performed 
until the total number of transitions between coiled and stretched states reached 100 for 
every N .  

We used the simulation data to construct the distribution function \k ( p  , 6 ' )  and proba- 
bility P ( p )  to find the dumbbell within the range A@ about p: 

where Ap = 0.01. In Figure 2 the example of simulated two-dimensional function 
\k ( p ,  6' )  is presented for N = 150. One can see that in the stretched state the dumbbells 
do not deviate significantly from the flow axis, as for the small extension ratios the random 
distribution of end-to-end vector h relative to flow axis is observed. 

The simulation results were compared with analytical calculations performed in the 
effective potential appr~ximation.~ For \k ( p ,  6' )  there is a rather good agreement between 
experimental and theoretical results except for the region near ps at small 6' (see Figure 3). 
In this region the values of \k( p,  0)  obtained analytically are smaller than those obtained 
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FIGURE 3 The disbibution function U(p, 0 )  for N = 150 and t- = ta. The analytical results: 0 = 1' 
(bold solid curve), 0 = 3" (solid curve), 0 = 5' (dotted curve), 6 = 7' (dashed curve). The simulation results: 
e = 10 (01, e = 30  (x), 0 = 50 (o), e = 70 (A).  
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FIGURE4 The relative difference AF,g between &projection Fsg of hydrodynamic force and its potential part 
F s o  as a function of extension ratio p for N = 150. 

at simulation. This difference, in our opinion, is a consequence of the effective potential 
approximation. As mentioned above, the effective potential approximation underestimates 
the &projection of the hydrodynamic force F,  (see Figure 4) that tends to align the 
dumbbells along the flow axis. The underestimation increases with the dumbbell extension 
due to the increase of friction coefficient < b ( P ) .  The difference between analytical and 
simulation results can be clearly seen in Figure 5 where the angular dependence of \k ( p  , 0 )  
at = ps is shown. This difference in the region near p s  can also be observed for P (p) 
(Figure 6). We can conclude that the effective potential approximation is quite appropriate 
over all phase space except the small region around stretched state. Even for this region, 
however, the maximal deviation does not exceed 20%. 

Therefore we can answer affirmatively the question posed in the introduction concerning 
the applicability of the equilibrium statistics to the dissipative system considered here. 
Another question is concerned with the kinetic properties. Figure 2 shows that there is 
only one reaction coordinate in our system: the dumbbells must previously draw up along 
the flow axis, thereafter they can be stretched by the flow. Thus the barrier separating the 
coiled and stretched states is close to one-dimensional barrier. If transitions of the dumbbell 
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FIGURE 5 The analytical (solid curve) and simulation (W) distribution function @ ( p , 6 )  for N = 150 at 
p = ps and 6 = &. 
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FIGURE 6 The probability function P (  p). The analytical results: N = 100 (solid curve), N = 150 (dotted 
curve), and N = 200 (dashed curve). The simulation results: N = 100 (D), N = 150 (o), and N = 200 ( A ) .  

between these states could be considered as the Brownian motion over the one-dimensional 
potential barrier the Kramers theory could be applied:14 

, KO=--- 

where r,,, and T,+, are the transition times through the effective potential barrier UO 
from coiled state to stretched one and back, PO is the coordinate of the barrier top Uo. 
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TABLE III 
The transition times T ~ - ~  and rs-c through the effective potential barrier 

Tc-s Ts-c 

simulation simulation 
Kramers _ _ ~ -  Kramers 

N formulas (13) 1D model 3D model formulas (13) 1D model 3D model 

50 3.2 x lo4 2.1 x 104 1.7 x 104 3.2 x lo4 3.1 x lo4 2.2 x 104 
100 1.9 lo5 2.0 x 105 2.2 x lo5 2.3 x lo5 2.5 x 105 2.5 x lo5 

250 3.7 x 107 4.3 x 107 5.0 x 107 5.3 x 107 7.0 x 107 6.3 x lo7 

150 1.1 x lo6 1.3 x lo6 1.5 x lo6 1.5 x lo6 1.6 x lo6 1.8 x lo6 
200 6.5 x lo6 6.9 x lo6 6.8 x lo6 8.9 x lo6 9.2 x lo6 7.9 x lo6 

Denominator 2 in (12) is related with nonsymmetry about 0 = 0 of the effective 
potential well, corresponding to unstretched dumbbells (see Figure 1). Thus in the case 
of equal K,  and K, slopes of potential the wells, the weight of the stretched state must 
be twice as large as that of the unstretched state. From simulation the transition times 
were obtained with the help of the technique proposed by Helfand.I5 When the dumbbell 
approached the vicinity of one of the minima I&, - PI 5 0.01 a clock was turned on. 
The time was calculated until the dumbbell occurs in the vicinity of another minimum. 
Thereafter the clock was turned to zero and the time was once again until the transition in 
the opposite direction took place. In this way we can obtain the array of transition times 
from the coiled to the stretched state and in the opposite direction. According hazard plot 
te~hnique'~ this array enabled us determine to for every N the average transition times 
rC+ and r,,, through the potential barrier. 

Table I11 compares the simulated values of r,,, and rsSic for one-dimensional and three- 
dimensional dumbbell model with those calculated according to the Kramers formulas (12) 
and (13). There is a good agreement between the simulation results and those predicted for 
both dumbbell models. The corresponding dependencies In rS+ on barrier UO are shown 
in Figure 7. The deviations of simulated results from the Kramers formulas are connected 
with its inapplicability at low VO. 

Therefore the question about the kinetic properties posed above could also be answered 
affirmatively. 

Nonstationary case 

In this part we have studied the evolution of distribution function from the initial coiled 
or stretched state. We have simulated the dumbbell model with N = 100 at different 
values of velocity gradient k&i = i, f iAC, i = 0 , l . .  .4, i, = 3.818 x lop4, 
A i  = 0.062 x At t =: 0, h = (20,0,0) (coiled state) or h = (70,0,0) (stretched 
state). The corresponding effective potential curves V ( p )  are presented in Figure 1 for 
some values of 6. For every initial condition and every velocity gradient value 50 runs 
were performed and distribution functions \k@, n) over all runs at every time interval 
from t,-l = (n  - l)8OAt to t ,  = n80At  (n = 1 ,2 ,3 .  . .) were calculated. With the 
help of Ik ( p  , n)  the average extension ratios (0 (n ) )  of the dumbbell were determined. 
For every case we have also calculated the transition times Ttr through the corresponding 
potential barrier using the Kramers formulas (12) and (13). In Figure 8 the dependencies 
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FIGURE 7 The logarithm dependence of transition time T ~ + ~  on the harrier height UO for 1D model (6) and 
3D model (U). 
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FIGURE 8 The dependence of average extension ratio (p) on t , ~  = t / T U  for different i. Curves 1-3 
obtained from the initial coiled state, curves 4-6 obtained from the initial stretched state of the dumbbell. i = 
4.005 x (curve l), i = 3.943 x (curve 2), i = 3.880 x (curve3), i = 3.818 x (curve4), 
i = 3.756 x (curve 6). (curve 5) ,  i = 3.693 x 

of average extension ratio on time t,l expressed in units of Ttr for some values of velocity 
gradient and for two initial conditions (coiled and stretched states) are presented. One can 
see that at large t,l the values of (p )  stop to change. The dependence of stationary values 
of (p )  on i is a single valued curve (see Figure 9) as the curves obtained by Bird etu1.l6 But 
if dependencies of (p )  on C are plotted at low t,l we obtain the S-shaped curves similar to 
those of de Gennes! 

Therefore the de Gennes approach is correct at observation times comparable with the 
times of transition through the effective potential barriers. This is what usually occurs at 
real experimental situation.6 To obtain the S-shaped curve Bird should have solved the 
diffusion equation with initial conditions corresponding to both coiled and stretched states 
and he should have considered nonstationary solutions. 

5. CONCLUSION 

Thus the simulation by the Brownian dynamics technique was first used investigation 
of the coil-stretched chain transition of flexible polymers in an elongational flow. The 
comparison of the simulation results with those obtained analytically by effective potential 
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FIGURE 9 The dependence of ( p )  on the velocity gradient 8 for the stationary case: analytical results (solid 
curve), simulation results for transkion from coiled (x )  and stretched (0 )  initial states. For the nonstationary 
case: t , ~  = 5 (A)  and tre1 = 1 (W). The values corresponding to barrier tops UO are represented by (+). 
Manually drawn S-shaped curve connecting (+) and (0 )  resembles that of de Gennes. 

approximation showed that the later correctly describes the equilibrium properties of the 
system. The transition times through the effective potential barrier were in good agreement 
with the prediction of the Kramers theory for the motion of the Brownian particle over 
the one-dimensional potential barrier. Some points of the discussion between Bird and de 
Gennes are clarified. 
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